[1] Leibova NM, Zoteva AS, Kagan ES, Felikson AE. Use of maraging steels for parts of metal working machines. Met. Sc. and H. Treat. 1974;(16):852-55.
[2] Rusanenko VV, Zhukov OP, Blinova EN, Filippova VP, Makuschev SYu. Structure and properties of high-strength iron-nickel maraging steels. B. of the Rus. Acad. of Sc.: Phys. 2012;(76):1217-20.
[3] van Swam LF, Pelloux RM, Grant NJ. Fatigue behavior of maraging steel 300. Metallur. Transac. 1975;(6):45-54.
[4] Chernyshova TA, Lyulkina TV. Influence of rapid quenching of the melt on structure and properties of maraging steel. J. of Mater. Sc. 1992;(27):580-86.
[5] Hu Z-F, Wang Ch-Xu. Effect of tube spinning with subsequent heat-treatment on performance and microstructure evolution of T250 Maraging Steel. Internat. J. of Ir. and St. Resear. 2012;(19(5)):63-68.
[6] Pardal JM, Tavares SSM, Terra VF, da Silva MR, dos Santos DR. Modeling of precipitation hardening during the aging and overaging of 18Ni–Co–Mo–Ti maraging 300 steel. J. of Al. and Comp. 2005;(393(1- 2)):109-13.
[7] Grachev SV, Shein AS. High-strength maraging steels. Met. Sc. and Heat Treatm. 1989;(31):237-43.
[8] Morris JWJr. Making steel strong and cheap. Nat. Mater. 2017;(16):787-89.
[9] Li H, Liu Y, Liu B, Wei D. Synergistic enhancement of strength and ductility of cobalt-free maraging steel via nanometer-scaled microstructures. Mater. Sc. and Engineer. 2022;(842):article number 143099.
[10] Manohar G, Pandey KM, Maity SR. Effect of spark plasma sintering on microstructure and mechanical properties of AA7075/BC/ZrC hybrid nanocomposite fabricated by powder metallurgy techniques. Mater. Chem. and Phys. 2022;(282):article number 126000.
[11] Tian J, Wang W, Li H, Babar Shahzad M, Shan Y, Jiang Zh, et al. Effect of deformation on precipitation hardening behavior of a maraging steel in the aging process. Mater. Character. 2019;(155):article number 109827.
[12] Cerra Florez MA, Pereira ÚC, Cardoso JL, Santos Oliveira FJ, Araújo WS, Ribas GF, et al. Microstructural characterization of grade 300 and grade 350 maraging steels and electrochemical study in hydrofluoric solution. J. of Fluor. Chem. 2021;(243):article number 109738.
[13] Kablov EN, Petrushin NV, Bronfin MB, Alekseev AA. Features of single-crystal heat-resistant nickel alloys alloyed with rhenium. Metals. 2006;(5):1-24.
[14] Fedoseeva A, Nikitin I, Dudova N. Selection of heat treatment regime for advanced heat-resistant 10%Cr-3%Co-3%W-0.2%Re martensitic steel. Tam. Univer. Rep. 2018;(23(122)):298-02.
[15] Fedoseeva A, Nikitin I, Dudova N, Kaibyshev R. On effect of rhenium on mechanical properties of a high-Cr creep-resistant steel. Mater. Let., 2018;(236):81-84.
[16] Rangasayee K, Donovan NL, Peeyush N. Optimization of direct aging temperature of Ti free grade 300 maraging steel manufactured using laser powder bed fusion (LPBF). Mater. Sc. and Engineer. 2021;(817):article number 141266.
[17] Kablov EN. Physico-chemical and technological features of the creation of heat-resistant alloys containing rhenium. B. of the Mos. Univer. 2005;(46(3)):155-167.
[18] Dehgahi S, Pirgazi H, Sanjari M, Alaghmandfard R, Tallon J, Odeshi A, Kestens L, Mohammadi M. Texture evolution during high strain-rate compressive loading of maraging steels produced by laser powder bed fusion. Mater. Character. 2021;(178):article number 111266.
[19] Dehgahi S, Sanjari M, Ghoncheh MH, Shalchi Amirkhiz B, Mohammadi M. Concurrent improvement of strength and ductility in heat-treated C300 maraging steels produced by laser powder bed fusion technique. Addit. Manufact. 2021;(39):article number 101847.
[20] Tian J, Wang W, Li H, Yang K, Jiang Z. Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition. Mater. Sc. and Engineer. 2021;(805):article number 140589.
[21] Dehgahi S, Ghoncheh MH, Hadadzadeh A, Sanjari M, Shalchi Amirkhiz B, Mohammadi M. The role of titanium on the microstructure and mechanical properties of additively manufactured C300 maraging steels. Mater. & Des.2020;(194):article number 108965.
[22] Yang G, Deng F, Zhou S, Wu B, Qin L. Microstructure and mechanical properties of a novel Cu-reinforced maraging steel for wire arc additive manufacturing. Mater. Sc. and Engineer. 2021;(825):article number 141894.
[23] Wang ZH, Niu B, Wang Q, Dong C, Jie JC, Wang TM, et al. Designing ultrastrong maraging stainless steels with improved uniform plastic strain via controlled precipitation of coherent nanoparticles. J. of Mater. Sc. & Technol. 2021;(93):60-70.
[24] Mahale RSh, Shamanth V, Sharath PC, Shashanka R, Hemanth K. A review on spark plasma sintering of duplex stainless steels. Materialst. Proceed. 2021;(45(1)):138-44.
[25] Simonyan VA. Research of maraging steels powder blend fussing and compression. Techn. Sc. 2022;(5(119)):102-07.
[26] Paul MJ, Muniandy Y, Kruzica JJ, Ramamurty U, Gludovatz B. Effect of heat treatment on the strength and fracture resistance of a laser powder bed fusion-processed 18Ni-300 maraging steel. Mater. Sc. and Engineer. 2022;(844):article number 143167.
[27] Zhao Zh, Wang L, Konga D, Liu P, He X, Ni X, et al. Texture dependence on the mechanical properties of 18Ni300 maraging steel fabricated by laser powder bed fusion. Mater. Character. 2022;(189):article number 111938.
[28] de Baere D, Moshiri M, Smolej L, Hattel JH. Numerical investigation into laser-based powder bed fusion of cantilevers produced in 300-grade maraging steel. Addit. Manuf. 2022;(50):article number 102560.
[29] Nouri N, Li Q, Damon J, Mühl F, Graf G, Dietrich S, et al. Characterization of a novel maraging steel for laser-based powder bed fusion: Optimization of process parameters and post heat treatments. J. of Mater. Resear. and Technol. 2022;(18):931-42.
[30] Guo L, Zhang L, Andersson J, Ojo O. Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties. J. of Mater. Sc. & Technol. 2022;(120):227-52.
[31] Hong Y, Dong DD, Lin SS, Wang W, Tang CM, Kuang TC, et al. Improving surface mechanical properties of the selective laser melted 18Ni300 maraging steel via plasma nitriding. Surf. and Coat. Technol. 2021;(406):article number 126675.