[1] Lamy C, Dubroca B, Nicola P, Tikhonchuk V, Feugeas J-L. Modeling of electron nonlocal transport in plasmas using artificial neural networks. Phys. Rev. E, 2022;(105):article number 055201.
[2] Tang B, Zank GP, Kolobov VI. Numerical modeling of suprathermal electron transport in the solar wind: Effects of whistler turbulence with a full diffusion tensor. The Astrophys. J, 2022;(924(2)):1-13.
[3] An X, Chen M, Sheng Z-M, Zhang J. Modeling of bound electron effects in particle-in-cell simulation. Communic. in Computat. Phys. 2022;(32):583-94.
[4] Liu Y, Aleynikova K, Paz-Soldan C, Aleynikov P, Lukash V, Khayrutdinov R. Toroidal modeling of runaway electron loss due to 3D fields in ITER. Nucl. Fus. 2022;(62(6)):article number 066026.
[5] Li X, Guo F, Chen B, Shen C, Glesener L. Modeling electron acceleration and transport in the early impulsive phase of the 2017 September 10 solar flare. The Astrophys. J. 2022;(932(2)):article number 04946.
[6] Modeling of nonlocal electron transport in laser-driven double-ablation fronts. [Internet]. 2022. Available from: http/meetings.aps.org/Meeting/DPP22/Session/PO04.9.
[7] Relaxation of electron beams/strahls in solar outflows: observations vs. modeling. [Internet]. 2022. Available from: http/ui.adsabs.harvard.edu/abs/2022cosp...44.1668L/abstract.
[8] Funaba H, Yamada I, Yasuhara R, Uehara H, Tojo H, Yatsuka E, et al. Fast signal modeling for Thomson scattering diagnostics and effects on electron temperature evaluation. Plas. and Fus. Resear. 2022;(17):number article 2402032.
[9] Vatansever D, Nuwal N, Levin DA. Modeling of electron emitting surfaces submersed in boundary layer plasmas. In: 2022 IEEE International Conference on Plasma Science (ICOPS). New York: IEEE Publishing; 2022. P. 1-2.
[10] Lazurik V, Sawan S, Lazurik V, Rudychev V. Semi-empirical models of electron beam control in radiation technologies. In: 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). New York: IEEE Publishing; 2022. P. 27-31.
[11] Linder O. Self-consistent modeling of electron runaway in tokamak disruptions. Munich: Technische Universität München; 2022.
[12] Adhikari L, Zank GP, Zhao L-L, Nakanotani M, Tasnim S. Modeling proton and electron heating in the fast solar wind. Astron. & Astrophys. 2021;(650):23-30.
[13] Wibowo M, Irons TJ, Teale AM. Modeling ultrafast electron dynamics in strong magnetic fields using real-time time-dependent electronic structure methods. J. of Chem. Theory and Computat. 2021;(17(4)):2137-165.
[14] Huang Y, Xiang N, Chen J, Ma L, Li E, Gong X, et al. Modeling very high electron heating by radio frequency waves on EAST. Nuclear Fusion. 2021;(61(9)):article number 096026.
[15] Wang Z, Xue K, Wang C, Zhang T, Fan L, Hu Z, et al. Near real-time modeling of global ionospheric vertical total electron content using hourly IGS data. Chinese J. of Aeronaut. 2021;(34(2)):386-95.
[16] Gaudenzi R. Elementary particles as excitations of a solid medium. Is the universe a superconductor? In: Historical roots of spontaneous symmetry breaking. Berlin: Springer; 2022. P. 69-112.
[17] Daley AJ, Bloch I, Kokail C, Flannigan S, Pearson N, Troyer M, et al. Practical quantum advantage in quantum simulation. Nature. 2022;(607):667-76.
[18] Mdzinarishvili VV. New models of the physical microcosm and their optimality. Open Access Libr. J. 2022;(9(5)):1-20.
[19] Bass SD, Zohar E. Quantum technologies in particle physics. Philos. Transact. of the Royal Society A. 2022;(380):article number 20210072.
[20] Hangleiter D, Carolan J, Thébault KP. Analogue quantum simulation: A new instrument for scientific understanding. Berlin: Springer Nature; 2022.
[21] Solomon R, Agarwal G, Stojkovic D. Environment dependent electron mass and the Hubble constant tension. Phys. Review D. 2022;(105(10)):article number 103536.
[22] Qu G, Tatara G. The inverse faraday effect in the massive dirac electrons. Phys. Review B. 2022;(106):article number 094414.
[23] Uka A, Nazarko S. New expression of energy and the use of spatial parameters to achieve unification based on the ideas of Einstein and Wheeler. In: The Fifteenth Marcel Grossmann Meeting: On recent developments in theoretical and experimental general relativity, astrophysics, and relativistic field theories. Singapore: World Scientific Publishing; 2022. P. 792-02
[24] Le HP. Quantum Fokker-Planck modeling of degenerate electrons. J. of Computat. Physics. 2021;(434):article number 110230.
[25] Nash L. On the dynamics of Euclidean space-time at the Planck scale. Reports in Advances of Phys. Sciences. 2022;(3):article number 2250002.
[26] Walkowiak J, Jardin A, Bielecki J, Peysson Y, Mazon D, Dworak D, et al. Approximate atomic models for fast computation of the Fokker-Planck equation in fusion plasmas with high-Z impurities and suprathermal electrons. Physics of Plasmas. 2022;(29):article number 022501.
[27] Konstantinou G, Kyriakou K, Moulopoulos K. 2016. Emergent non-Hermitian contributions to the Ehrenfest and Hellmann-Feynman theorems. Academia. 2016;(1):7-15.
[28] Daywitt WC. The cosmic microwave background radiation as viewed in the Planck vacuum theory. Europ. J. of Applied Physics. 2022;(4(1)):27-8.
[29] Li T, Yan Y, Shi Q. A low-temperature quantum Fokker-Planck equation that improves the numerical stability of the hierarchical equations of motion for the Brownian oscillator spectral density. The J. of Chem. Phys. 2022;(156(6)):article number 064107.
[30] Ghosal P, Ray R. Probability distribution for black hole evaporation. Physical Review D. 2022;(105):article number 124016.
[31] Martins CJAP, Ferreira FPSA, Marto PV. Varying fine-structure constant cosmography. Physics Letters B. 2022;(827):article number 137002.
[32] Cui Q. Revisiting gravity, fine-structure constant, speed of light, and mass-energy equation through cosmic microwave background. J. of Modern Physics. 2022;(13(7)):1045-52.
[33] Chang, M., Ge, Y., Sheng, L. Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal. Chinese Physics B. 2022;(31(5)):article number 057304.
[34] Pérez-García MA, Izzo L, Barba-González D, Bulla M, Sagués-Carracedo A, Pérez E, et al. 2022. Hubble constant and nuclear equation of state from kilonova spectro-photometric light curves. Astr. & Astrophys. 2022;(666):article number 134049.
[35] Pavliuk LO. Hubble’s constant in the physics of the gravitational field. In: Modern research in world science. Proceedings of the 6rd International Scientific and Practical Conference. Lviv: SPC. 2022; P. 289-94.
[36] Pavliuk LO. Relativistic addition of mutually perpendicular oscillations as an analogue in modeling the muon and taon. Sci-Article. 2021;(95):article number 162066.